An Exploration of the Relationships between Interactive Forms of Online Course Teaching and Students’ Learning Engagement
-
摘要: 教学交互是实现在线教与学再度整合的关键,也是影响学生在线学习投入的重要因素。作为同步课堂特殊交互方式之一的视频交互亦对教学交互和学生在线学习投入的关系产生重要影响。基于30所高校15441名研究生的调查数据,通过结构方程模型与分层回归模型,围绕在线课程教学交互与学习投入的关系展开分析。结果发现,在线课程生生交互、生师交互和内容交互能分别正向预测学生的在线学习行为投入、认知投入和情感投入;生生视频交互正向调节了教学交互与行为投入、认知投入以及情感投入的关系;而生师视频交互对教学交互与在线学习投入的关系无显著影响。在未来的在线教育过程中,可通过营造社会性交互环境、丰富交互内容、关注“触发性”交互事件、保障视频交互质量等方式促进学生在线课程的学习投入。Abstract: Teaching interaction is not only the key to the re-integration of online teaching and learning, but also an important factor affecting students’ engagement in online learning. As one of the special interactive modes in synchronous classroom, video interaction also has an important influence on the relationship between teaching interaction and students’ online learning engagement. Based on the survey data of 15441 postgraduates from 30 universities, this study conducted structural equation model and hierarchical multiple regression model to analyze the relationship between online teaching interaction on learning engagement. The results showed that learner-learner interaction, learner-teacher interaction, and learner-content interaction of online courses can positively predict students’ behavioral engagement, cognitive engagement and emotional engagement, respectively. The results also indicated that learner-learner video interaction positively moderates the relationship between teaching interaction and behavioral engagement, teaching interaction and cognitive engagement, and teaching interaction and emotional engagement. However, learner-teacher video interaction had no significant influence on the relationship between teaching interaction and learning engagement. In the future of online education, students’ online learning engagement can be promoted by creating a social interaction environment, enriching interactive content, triggering interactive events, and ensuring the quality of video interaction.
-
Key words:
- teaching interaction /
- online learning engagement /
- video interaction /
- moderating effect
1) ①目标系数为一阶因子有相关卡方值和二阶因子模型卡方值的比值,目标系数愈接近1,二阶模型愈具有代表性。 -
表 1 样本分别情况(N=15441)
变量名 选项 N 百分比(%) 变量名 选项 N 百分比(%) 性别 女 9552 61.86 学科 社会 5249 33.99 男 5889 38.14 工程 5181 33.55 生源地 直辖市/省会城市 3048 19.74 自然 2337 15.14 其他地级市 3568 23.11 人文 2674 17.32 县级市/县城 3603 23.33 学校 “一流大学”建设高校 5665 36.69 乡镇和农村 5222 33.82 “一流学科”建设高校 4136 26.79 年级 硕士生 14286 92.52 非“双一流”建设高校 5640 36.53 博士生 1155 7.48 表 2 教学交互、在线学习投入与视频交互的基本信息及相关关系
平均值 标准差 生生交互 生师交互 内容交互 行为投入 认知投入 情感投入 生生视频交互 生师视频交互 生生交互 3.737 0.780 — 生师交互 3.984 0.696 0.717*** — 内容交互 4.215 0.729 0.494*** 0.648*** — 行为投入 2.937 0.784 0.292*** 0.281*** 0.220*** — 认知投入 3.708 0.688 0.577*** 0.595*** 0.450*** 0.287*** — 情感投入 3.122 0.869 0.210*** 0.254*** 0.232*** 0.352*** 0.251*** — 生生视频交互 1.785 0.775 0.177*** 0.160*** 0.128*** 0.177*** 0.159*** 0.061*** — 生师视频交互 2.652 1.044 0.142*** 0.170*** 0.189*** 0.112*** 0.136*** 0.075*** 0.474*** — 注:*p<0.05,**p<0.01,***p<0.001,下三角为皮尔森相关系数。 表 3 教学交互与学习投入的群体差异
生生交互 生师交互 内容交互 生师视频交互 生生视频交互 行为投入 认知投入 情感投入 性别 N 平均值 F/T值 平均值 F/T值 平均值 F/T值 平均值 F/T值 平均值 F/T值 平均值 F/T值 平均值 F/T值 平均值 F/T值 性别 女 9552 3.76 3.716 *** 4.02 7.567 *** 4.23 5.053 *** 2.64 −1.676 1.78 −0.149 2.93 −1.325 3.7 −1.018 3.13 2.114 * 男 5889 3.71 3.93 4.17 2.67 1.79 2.95 3.72 3.10 学校 “一流大学”
建设高校5665 3.74 5.112 ** 4.00 14.609 *** 4.26 36.019 *** 2.70 30.171 *** 1.76 13.765 *** 2.88 27.431 ** 3.75 22.86 *** 3.16 18.614 *** “一流学科”
建设高校4136 3.77 4.02 4.22 2.70 1.84 2.99 3.72 3.14 非“双一流”
建设高校5640 3.72 3.95 4.15 2.57 1.78 2.96 3.66 3.07 学科 社会学科 5249 3.74 25.401 *** 3.97 65.523 *** 4.19 35.94 *** 2.77 81.296 *** 1.85 162.615 *** 2.87 30.77 *** 3.71 46.101 *** 3.06 19.99 *** 工程学科 5181 3.68 3.91 4.15 2.49 1.64 2.94 3.64 3.12 自然学科 2337 3.72 4.01 4.25 2.62 1.71 2.99 3.70 3.21 人文学科 2674 3.84 4.14 4.31 2.78 2.01 3.03 3.83 3.18 课程
类型专业理论课 13478 3.74 9.775 *** 3.98 7.935 *** 4.21 1.901 2.67 25.918 *** 1.79 33.386 *** 2.93 8.831 *** 3.71 7.291 *** 3.12 1.886 专业实践课 748 3.85 4.08 4.22 2.69 1.97 3.03 3.81 3.13 公共思政课 531 3.59 3.88 4.14 2.31 1.47 2.91 3.61 3.15 公共语言课 489 3.75 4.03 4.24 2.35 1.73 3.08 3.71 3.18 其他公共课 195 3.61 3.91 4.14 2.70 1.82 3.06 3.66 3.25 课程
规模小规模 3739 3.80 26.711 *** 4.07 45.211 *** 4.28 38.02 *** 2.77 45.218 *** 2.07 426.143 *** 2.99 13.699 *** 3.79 46.744 *** 3.17 7.783 ** 中规模 8676 3.74 3.97 4.19 2.65 1.75 2.92 3.70 3.11 大规模 3026 3.66 3.91 4.14 2.53 1.54 2.91 3.63 3.11 生源地 直辖市/
省会城市3048 3.80 28.623 *** 4.04 32.123 *** 4.27 25.379 *** 2.73 19.474 *** 1.78 4.299 *** 2.92 0.877 3.79 44.233 *** 3.24 31.456 *** 其他地级市 3568 3.79 4.03 4.23 2.70 1.82 2.94 3.76 3.15 县级市/县城 3603 3.75 4.00 4.22 2.66 1.78 2.95 3.71 3.09 乡镇/农村 5222 3.66 3.91 4.14 2.57 1.77 2.93 3.63 3.05 表 4 测量模型检验
因素载荷量 Cronbach’s α CR AVE χ2 df GFI AGFI TLI CFI RMSEA SRMR 生生交互 0.754-0.934 0.916 0.915 0.730 2071.311 2 0.936 0.876 0.869 0.956 0.079 0.041 生师交互 0.802-0.893 0.901 0.902 0.698 745.436 2 0.976 0.879 0.943 0.981 0.055 0.022 内容交互 0.907-0.950 0.950 0.950 0.865 — — — — — — 行为投入 0.621-0.852 0.823 0.827 0.548 17.784 2 0.999 0.997 0.998 0.999 0.023 0.005 认知投入 0.878-0.916 0.943 0.943 0.805 926.295 2 0.969 0.844 0.952 0.984 0.073 0.016 情感投入 0.560-0.869 0.838 0.844 0.582 188.131 2 0.994 0.970 0.979 0.993 0.078 0.017 判定标准 >0.50 >0.70 >0.70 >0.50 — — >0.90 >0.90 >0.90 >0.90 <0.08 <0.08 注:当测量模型的题项小于等于3时,拟合度指标为0,内容交互测量题项为3;卡方值(χ2)易受样本量的影响,本研究样本量较大,故暂不探讨卡方值以及卡方值与自由度的比值等(下同)。 表 5 结构模型路径系数
标准化系数 标准误 临界比 显著性 研究假设 生生交互→行为投入 0.223 0.017 14.707 *** H1a成立 生生交互→认知投入 0.291 0.012 24.588 *** H1b成立 生生交互→情感投入 0.076 0.017 5.058 *** H1c成立 生师交互→行为投入 0.146 0.020 7.686 *** H2a成立 生师交互→认知投入 0.386 0.014 26.029 *** H2b成立 生师交互→情感投入 0.196 0.021 10.396 *** H2c成立 内容交互→行为投入 0.035 0.013 2.739 0.006 H3a成立 内容交互→认知投入 0.048 0.009 4.838 *** H3b成立 内容交互→情感投入 0.091 0.014 7.154 *** H3c成立 表 6 视频交互在教学交互与学习投入关系中的调节作用
行为投入 认知投入 情感投入 模型1 模型2 模型3 模型1 模型2 模型3 模型1 模型2 模型3 背景变量 — 已控制 已控制 — 已控制 已控制 — 已控制 已控制 教学交互 0.287*** 0.288*** 0.616*** 0.618*** 0.257*** 0.258*** 生生视频交互 0.126*** 0.122*** 0.045*** 0.041*** 0.010 0.006 生师视频交互 0.007 0.007 −0.014 −0.013 0.023** 0.024** 教学交互*生生视频交互 0.031*** 0.017* 0.021* 教学交互*生师视频交互 −0.012 0.012 0.016 调整后R2 0.012 0.120 0.121 0.021 0.400 0.401 0.012 0.080 0.081 △R2 0.013 0.108 0.001 0.022 0.379 0.001 0.013 0.068 0.001 F 12.592 630.943 6.141 21.366 541.646 491.266 12.696 71.660 65.710 △F 12.592*** 111.525*** 101.556** 21.366*** 3244.58*** 7.992*** 12.696*** 381.126*** 8.522*** 注:*p<0.05,**p<0.01,***p<0.001。 -
[1] 崔佳, 刘冲. (2021). 协作式在线教学交互模型及动力研究. 重庆高教研究,9(02),1—14. [2] 陈丽. (2004). 远程学习的教学交互模型和教学交互层次塔. 中国远程教育,(05),24—28+78. [3] 陈丽, 王志军. (2016). 三代远程学习中的教学交互原理. 中国远程教育,(10),30—37+79-80. [4] 程志, 周铁. (2008). 基于认知负荷理论的教学媒体设计. 现代教育技术,(11),50—52+41. doi: 10.3969/j.issn.1009-8097.2008.11.011 [5] 黄庆双, 李玉斌, 任永功. (2018). 探究社区理论视域下学习者在线学习投入影响研究. 现代远距离教育,(06),73—81. doi: 10.3969/j.issn.1001-8700.2018.06.009 [6] 胡小平, 谢作栩. (2020). 疫情下高校在线教学的优势与挑战探析. 中国高教研究,(04),18—22+58. [7] 贾义敏, 詹春青. (2011). 情境学习: 一种新的学习范式. 开放教育研究,17(05),29—39. doi: 10.3969/j.issn.1007-2179.2011.05.006 [8] 穆肃, 王孝金. (2019). 参与和投入而非肤浅和简单—在线学习中的深层次学习. 中国远程教育,(02),17—25+92−93. [9] 邬大光, 李文. (2020). 我国高校大规模线上教学的阶段性特征—基于对学生、教师、教务人员问卷调查的实 证研究. 华东师范大学学报(教育科学版),38(07),1—30. [10] 王志军. (2016). 远程教育中“教学交互”本质及相关概念再辨析. 电化教育研究,37(04),36—41. [11] 王志军, 陈丽. (2015). 国际远程教育教学交互理论研究脉络及新进展. 开放教育研究,21(02),30—39. [12] 夏娇. (2018). 远程教育中教学媒体的交互性研究. 中国成人教育,(02),105—108. [13] 杨金勇, 裴文云, 刘胜峰. (2020). 疫情期间在线教学实践与经验. 中国电化教育,(04),29—41. doi: 10.3969/j.issn.1006-9860.2020.04.008 [14] 翟雪松, 束永红. (2019). 在线学习社区中的知识隐藏行为及影响机制研究—基于专业承诺和变革型指导风 格的视角分析. 远程教育杂志,37(05),85—94. [15] Anderson, T. (2003). Getting the mix right again: An updated and theoretical rationale for interaction. The International Review of Research in Open and Distributed Learning, 4(2), 1—14. doi: 10.19173/irrodl.v4i2.1086 [16] Bettinger, E., Liu, J., & Loeb, S. (2016). Connections matter: How interactive peers affect students in online college courses. Journal of Policy Analysis and Management, 35(4), 932—954. doi: 10.1002/pam.21932 [17] Blasco-Arcas, L., Buil, I., Hernández-Ortega, B., & Sese, F. J. (2013). Using clickers in class. The role of interactivity, active collaborative learning and engagement in learning performance. Computers & Education, 62, 102—110. [18] Coates, H. (2007). A model of online and general campus-based student engagement. Assessment & Evaluation in Higher Education, 32(2), 121—141. [19] Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013). Applied multiple regression/correlation analysis for the behavioral sciences. London: Routledge. [20] Dixson, M. D. (2010). Creating effective student engagement in online courses: What do students find engaging?. Journal of the Scholarship of Teaching and Learning, 10(2), 1—13. [21] Fornell C, Larcker D F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39—50. doi: 10.1177/002224378101800104 [22] Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of educational research, 74(1), 59—109. doi: 10.3102/00346543074001059 [23] Garrison, D. R., Anderson, T., & Archer, W. (2001). Critical thinking, cognitive presence, and computer conferencing in distance education. American Journal of distance education, 15(1), 7—23. doi: 10.1080/08923640109527071 [24] Greenhow, C., Robelia, B., & Hughes, J. E. (2009). Learning, teaching, and scholarship in a digital age: Web 2.0 and classroom research: What path should we take now?. Educational researcher, 38(4), 246—259. doi: 10.3102/0013189X09336671 [25] Hillman, D. C., Willis, D. J., & Gunawardena, C. N. (1994). Learner‐interface interaction in distance education: An extension of contemporary models and strategies for practitioners. American Journal of Distance Education, 8(2), 30—42. doi: 10.1080/08923649409526853 [26] Kahu, E. R. (2013). Framing student engagement in higher education. Studies in higher education, 38(5), 758—773. doi: 10.1080/03075079.2011.598505 [27] Kreijns, K., & Kirschner, P. A. (2001). The social affordances of computer-supported collaborative learning environments. In 31st Annual Frontiers in Education Conference. Impact on Engineering and Science Education. Conference Proceedings (Cat. No. 01CH37193) (Vol. 1, pp. T1F-12). IEEE. [28] Lee, S. J., Srinivasan, S., Trail, T., Lewis, D., & Lopez, S. (2011). Examining the relationship among student perception of support, course satisfaction, and learning outcomes in online learning. The Internet and Higher Education, 14(3), 158—163. doi: 10.1016/j.iheduc.2011.04.001 [29] Liyanage, I., & Bartlett, B. (2013). Personality types and languages learning strategies: Chameleons changing colours. System, 41(3), 598—608. doi: 10.1016/j.system.2013.07.011 [30] Ma, J., Han, X., Yang, J., & Cheng, J. (2015). Examining the necessary condition for engagement in an online learning environment based on learning analytics approach: The role of the instructor. The Internet and Higher Education, 24, 26—34. doi: 10.1016/j.iheduc.2014.09.005 [31] Meyer, K. A. (Ed.). (2014). Student Engagement Online: What Works and Why. New Jersey: John Wiley & Sons. [32] Moore, M. G. (1989). Three types of interaction. The American Journal of Distance Education, 3(02), 1—6. doi: 10.1080/08923648909526659 [33] Moore, M. G. (1993). Theory of transactional distance. Theoretical principles of distance education, 1, 22—38. [34] Neumann, R., Parry, S., & Becher, T. (2002). Teaching and learning in their disciplinary contexts: A conceptual analysis. Studies in higher education, 27(4), 405—417. doi: 10.1080/0307507022000011525 [35] Paul, R. C., Swart, W., Zhang, A. M., & MacLeod, K. R. (2015). Revisiting Zhang’s scale of transactional distance: Refinement and validation using structural equation modeling. Distance Education, 36(3), 364—382. doi: 10.1080/01587919.2015.1081741 [36] Schindler, L. A., Burkholder, G. J., Morad, O. A., & Marsh, C. (2017). Computer-based technology and student engagement: a critical review of the literature. International Journal of Educational Technology in Higher Education, 14(1), 1—28. doi: 10.1186/s41239-017-0046-1 [37] Shea, P., & Bidjerano, T. (2009). Community of inquiry as a theoretical framework to foster “epistemic engagement” and “cognitive presence” in online education. Computers & Education, 52(3), 543—553. [38] Shukor, N. A., Tasir, Z., Van der Meijden, H., & Harun, J. (2014). A predictive model to evaluate students’ cognitive engagement in online learning. Procedia-Social and Behavioral Sciences, 116, 4844—4853. doi: 10.1016/j.sbspro.2014.01.1036 [39] Vrasidas, C., & McIsaac, M. S. (1999). Factors influencing interaction in an online course. American Journal of Distance Education, 13(3), 22—36. doi: 10.1080/08923649909527033 [40] Wang, Z., Chen, L., & Anderson, T. (2014). A framework for interaction and cognitive engagement in connectivist learning contexts. International Review of Research in Open and Distributed Learning, 15(2), 121—141. [41] Wei, C. W., & Chen, N. S. (2012). A model for social presence in online classrooms. Educational Technology Research and Development, 60(3), 529—545. doi: 10.1007/s11423-012-9234-9 [42] Yang, Y. F., & Tsai, C. C. (2010). Conceptions of and approaches to learning through online peer assessment. Learning and Instruction, 20(1), 72—83. doi: 10.1016/j.learninstruc.2009.01.003 [43] Young, S., & Bruce, M. A. (2011). Classroom community and student engagement in online courses. Journal of Online Learning and Teaching, 7(2), 219—230. -