中国人文社会科学核心期刊

中文社会科学引文索引(CSSCI)来源期刊

中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国际科学教学心理的研究进展与趋势

韩葵葵 胡卫平 王碧梅

韩葵葵, 胡卫平, 王碧梅. 国际科学教学心理的研究进展与趋势[J]. 华东师范大学学报(教育科学版), 2014, 32(4): 63-70.
引用本文: 韩葵葵, 胡卫平, 王碧梅. 国际科学教学心理的研究进展与趋势[J]. 华东师范大学学报(教育科学版), 2014, 32(4): 63-70.
HAN Kuikui, HU Weiping, WANG Bimei. Research Progress and Trend of International Research on Science Teaching Psychology[J]. Journal of East China Normal University (Educational Sciences), 2014, 32(4): 63-70.
Citation: HAN Kuikui, HU Weiping, WANG Bimei. Research Progress and Trend of International Research on Science Teaching Psychology[J]. Journal of East China Normal University (Educational Sciences), 2014, 32(4): 63-70.

国际科学教学心理的研究进展与趋势

基金项目: 

国家自然科学基金 31271094

国家自然科学基金 31470977

科技基础性工作专项 2013IM030200

教育部人文社科基金 12YJA190007

陕西省2012-2013年度基础教育重大招标课题 ZDKT1208-1

Research Progress and Trend of International Research on Science Teaching Psychology

  • 摘要: 近几年来,国际科学教学心理研究体现出研究思路的系统化、研究方法的综合化和研究内容的整合化等特点,研究领域主要集中在概念学习、学习环境、探究教学、教师研究等方面。概念学习注重核心概念和学习进阶,学习环境重视技术支撑和模型建构,探究教学强调合作学习与科学论证,教师心理侧重发展模型、专业知识和专业信念。在未来的科学教学心理研究中,科学学习和问题解决的认知神经机制将会得到重视,聚合科技的思想将会得到体现,围绕科学教育促进学生核心素养提高的研究将会得到加强。
  • [1] Alonzo A. C., & Steedle J. T. 2009. Developing and assessing a force and motion learning progression. Science Education, 93(3): 389-421. doi:  10.1002/sce.20303
    [2] Birchfield D., & Megowan-Romanowicz C. 2009. Earth science learning in SMALLab: A design experiment for mixed reality. International Journal of Computer-Supported Collaborative Learning, 4(4): 403-421. doi:  10.1007/s11412-009-9074-8
    [3] Brooks M. 2009. Drawing, visualisation and young children's exploration of "big ideas". International Journal of Science Education, 31(3): 319-341. doi:  10.1080/09500690802595771
    [4] Cavagnetto A. R. 2010. Argument to Foster Scientific Literacy A Review of Argument Interventions in K-12 Science Contexts. Review of Educational Research, 80(3): 336-371. doi:  10.3102/0034654310376953
    [5] Choi A., Notebaert A., Diaz J., & Hand B. 2010. Examining arguments generated by year 5, 7, and 10 students in science classrooms. Research in Science Education, 40(2): 149-169. doi:  10.1007/s11165-008-9105-x
    [6] Cooper M. M., Corley L. M., & Underwood S. M. 2013. An investigation of college chemistry students' understanding of structure-property relationships. Journal of Research in Science Teaching, 50(6): 699-721. doi:  10.1002/tea.21093
    [7] Dede C. 2009. Immersive interfaces for engagement and learning. Science, 3235910, 66-69. https://www.researchgate.net/publication/23716382_Immersive...
    [8] Duncan R. G., & Rivet A. E. 2013. Science Learning Progressions. Science, 3396118, 396-397. doi:  10.1126/science.1228692
    [9] Foong C.-C., & Daniel E. G. 2013. Students' Argumentation Skills across Two Socio-Scientific Issues in a Confucian Classroom: Is transfer possible? International Journal of Science Education, 35(14): 2331-2355. doi:  10.1080/09500693.2012.697209
    [10] Ioannidou A., Repenning A., Webb D., Keyser D., Luhn L., & Daetwyler C. 2010. Mr. Vetro: A Collective Simulation for teaching health science. International Journal of Computer-Supported Collaborative Learning, 5(2): 141-166. doi:  10.1007/s11412-010-9082-8
    [11] Järvelä S., Volet S., & Järvenoja H. 2010. Research on motivation in collaborative learning: Moving beyond the cognitive-situative divide and combining individual and social processes. Educational Psychologist, 45(1): 15-27. doi:  10.1080/00461520903433539
    [12] Jin H., & Anderson C. W. 2012. A learning progression for energy in socio-ecological systems. Journal of Research in Science Teaching, 49(9): 1149-1180. doi:  10.1002/tea.21051
    [13] Jin H., Zhan L., & Anderson C. W. 2013. Developing a Fine-Grained Learning Progression Framework for Carbon-Transforming Processes. International Journal of Science Education, 35(10): 1663-1697. doi:  10.1080/09500693.2013.782453
    [14] Johnson C. C. 2011. The road to culturally relevant science: Exploring how teachers navigate change in pedagogy. Journal of Research in Science Teaching, 48(2): 170-198. doi:  10.1002/tea.20405
    [15] Kang H., & Lundeberg M. A. 2010. Participation in science practices while working in a multimedia case-based environment. Journal of Research in Science Teaching, 47(9): 1116-1136. doi:  10.1002/tea.20371
    [16] Khishfe R. 2013. Explicit Nature of Science and Argumentation Instruction in the Context of Socioscientific Issues: An effect on student learning and transfer. International Journal of Science Education, 36(6): 974-1016. doi:  10.1080/09500693.2013.832004
    [17] Kuhn D. 1992. Thinking as argument. Harvard Educational Review, 62(2): 155-179. doi:  10.17763/haer.62.2.9r424r0113t670l1
    [18] Kuhn D. 2010. Teaching and learning science as argument. Science Education, 94(5): 810-824. doi:  10.1002/sce.v94:5
    [19] Lawson A. 2003. The nature and development of hypothetico‐predictive argumentation with implications for science teaching. International Journal of Science Education, 25(11): 1387-1408. doi:  10.1080/0950069032000052117
    [20] Lelliott A., & Rollnick M. 2010. Big ideas: A review of astronomy education research 1974-2008. International Journal of Science Education, 32(13): 1771-1799. doi:  10.1080/09500690903214546
    [21] Levy S., & Wilensky U. 2009. Students' Learning with the Connected Chemistry (CC1) Curriculum: Navigating the Complexities of the Particulate World. Journal of Science Education and Technology, 18(3): 243-254. doi:  10.1007/s10956-009-9145-7
    [22] Lin H.-s., Hong Z.-R., & Lawrenz F. 2012. Promoting and scaffolding argumentation through reflective asynchronous discussions. Computers & Education, 59(2): 378-384. https://www.sciencedirect.com/science/article/pii/S0360131512000425
    [23] Mohan L., Chen J., & Anderson C. W. 2009. Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching, 46(6): 675-698. doi:  10.1002/tea.20314
    [24] Neumann K., Viering T., Boone W. J., & Fischer H. E. 2013. Towards a learning progression of energy. Journal of Research in Science Teaching, 50(2): 162-188. doi:  10.1002/tea.v50.2
    [25] Nussbaum E. M., & Edwards O. V. 2011. Critical questions and argument stratagems: A framework for enhancing and analyzing students' reasoning practices. Journal of the Learning Sciences, 20(3): 443-488. doi:  10.1080/10508406.2011.564567
    [26] Osborne J., Erduran S., & Simon S. 2004. Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10): 994-1020. doi:  10.1002/(ISSN)1098-2736
    [27] Plass J. L., Milne C., Homer B. D., Schwartz R. N., Hayward E. O., Jordan T., ... Barrientos J. 2012. Investigating the effectiveness of computer simulations for chemistry learning. Journal of Research in Science Teaching, 49(3): 394-419. doi:  10.1002/tea.21008
    [28] Richmond G., & Manokore V. 2011. Identifying elements critical for functional and sustainable professional learning communities. Science Education, 95(3): 543-570. doi:  10.1002/sce.20430
    [29] Roth W. M., Ritchie S. M., Hudson P., & Mergard V. 2011. A study of laughter in science lessons. Journal of Research in Science Teaching, 48(5): 437-458. doi:  10.1002/tea.v48.5
    [30] Rozenszayn R., & Assaraf O. B.-Z. 2011. When collaborative learning meets nature: Collaborative learning as a meaningful learning tool in the ecology inquiry based project. Research in Science Education, 41(1): 123-146. doi:  10.1007/s11165-009-9149-6
    [31] Saka Y., Southerland S., Kittleson J., & Hutner T. 2013. Understanding the Induction of a Science Teacher: The Interaction of Identity and Context. Research in Science Education, 43(3): 1221-1244. doi:  10.1007/s11165-012-9310-5
    [32] Saka Y., Southerland S. A., & Brooks J. S. 2009. Becoming a member of a school community while working toward science education reform: Teacher induction from a cultural historical activity theory (CHAT) perspective. Science Education, 93(6): 996-1025. doi:  10.1002/sce.20342
    [33] Sampson V., & Clark D. B. 2011. A comparison of the collaborative scientific argumentation practices of two high and two low performing groups. Research in Science Education, 41(1): 63-97. doi:  10.1007/s11165-009-9146-9
    [34] Sampson V., & Walker J. P. 2012. Argument-driven inquiry as a way to help undergraduate students write to learn by learning to write in chemistry. International Journal of Science Education, 34(10): 1443-1485. doi:  10.1080/09500693.2012.667581
    [35] Scherr R. E., & Hammer D. 2009. Student Behavior and Epistemological Framing: Examples from Collaborative Active-Learning Activities in Physics. Cognition and Instruction, 27(2): 147-174. doi:  10.1080/07370000902797379
    [36] Shen J., Lei J., Chang H.-Y., & Namdar B. 2014. Technology-Enhanced, Modeling-Based Instruction (TMBI) in Science Education. In J. M. Spector M. D. Merrill J. Elen & M. J. Bishop (Eds.), Handbook of Research on Educational Communications and Technology (pp. 529-540): Springer New York.
    [37] Shen J., & Linn M. C. 2010. A Technology‐Enhanced Unit of Modeling Static Electricity: Integrating scientific explanations and everyday observations. International Journal of Science Education, 33(12): 1597-1623. doi:  10.1080/09500693.2010.514012
    [38] Simpson G., Hoyles C., & Noss R. 2006. Exploring the mathematics of motion through construction and collaboration. Journal of Computer Assisted Learning, 22(2): 114-136. doi:  10.1111/j.1365-2729.2006.00164.x
    [39] Stevens S., Sutherland L., Schank P., & Krajcik J. 2007. The big ideas of nanoscience. Unpublished manuscript.
    [40] Stevens S. Y., Sutherland L. M., & Krajcik J. S. 2009. The big ideas of nanoscale science &engineering: A guidebook for secondary teachers: NSTA press.
    [41] Sun D., & Looi C.-K. 2013. Designing a web-based science learning environment for model-based collaborative inquiry. Journal of Science Education and Technology, 22(1): 73-89. doi:  10.1007/s10956-012-9377-9
    [42] Toulmin S. 2003. The Uses of Argument. 1958. Cambridge: Cambridge UP. https://ci.nii.ac.jp/ncid/BA11287932?l=ja
    [43] Wieman C. E., Adams W. K., Loeblein P., & Perkins K. K. 2010. Teaching Physics Using PhET Simulations. The Physics Teacher, 48(4): 225-227. doi: doi: 10.1119/1.3361987
    [44] Wu H. K. 2010. Modelling a Complex System: Using novice-expert analysis for developing an effective technology-enhanced learning environment. International Journal of Science Education, 32(2): 195-219. doi:  10.1080/09500690802478077
    [45] Xie Q., & Tinker R. 2006. Molecular Dynamics Simulations of Chemical Reactions for Use in Education. Journal of chemical education, 83(1): 77. doi:  10.1021/ed083p77
    [46] Yen H.-C., Tuan H.-L., & Liao C.-H. 2011. Investigating the influence of motivation on students' conceptual learning outcomes in web-based vs. classroom-based science teaching contexts. Research in Science Education, 41(2): 211-224. https://eric.ed.gov/?id=EJ915586
    [47] Zhang B., Liu X., & Krajcik J. S. 2006. Expert models and modeling processes associated with a computer-modeling tool. Science Education, 90(4): 579-604.doi: 10.1002/sce.20129
  • 加载中
计量
  • 文章访问数:  191
  • HTML全文浏览量:  172
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 刊出日期:  2014-12-30

目录

    /

    返回文章
    返回