中国人文社会科学核心期刊

中文社会科学引文索引(CSSCI)来源期刊

中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

寻找“最佳证据”:如何运用元分析进行文献综述

曾昭炳 姚继军

曾昭炳, 姚继军. 寻找“最佳证据”:如何运用元分析进行文献综述[J]. 华东师范大学学报(教育科学版), 2020, 38(6): 70-85. doi: 10.16382/j.cnki.1000-5560.2020.06.005
引用本文: 曾昭炳, 姚继军. 寻找“最佳证据”:如何运用元分析进行文献综述[J]. 华东师范大学学报(教育科学版), 2020, 38(6): 70-85. doi: 10.16382/j.cnki.1000-5560.2020.06.005
Zeng Zhaobing, Yao Jijun. Identifying the “Best Evidence”: How to Use Meta-analysis to Conduct a Literature Review—A Case of STEM Education’s Effect on Students’ Academic Achievement[J]. Journal of East China Normal University (Educational Sciences), 2020, 38(6): 70-85. doi: 10.16382/j.cnki.1000-5560.2020.06.005
Citation: Zeng Zhaobing, Yao Jijun. Identifying the “Best Evidence”: How to Use Meta-analysis to Conduct a Literature Review—A Case of STEM Education’s Effect on Students’ Academic Achievement[J]. Journal of East China Normal University (Educational Sciences), 2020, 38(6): 70-85. doi: 10.16382/j.cnki.1000-5560.2020.06.005

寻找“最佳证据”:如何运用元分析进行文献综述

doi: 10.16382/j.cnki.1000-5560.2020.06.005
基金项目: 2018年度教育部人文社会科学研究规划基金项目“中小学生STEM学习效果的影响因素及其作用机制研究”(18YJA880108);“江苏高校优势学科建设工程资助项目”(PAPD)

Identifying the “Best Evidence”: How to Use Meta-analysis to Conduct a Literature Review—A Case of STEM Education’s Effect on Students’ Academic Achievement

  • 摘要: 元分析相对于传统的主观性文献综述方法而言,能够更加有效、客观和规范地从既有实证研究文献中梳理出一般性、规律性的结论,因此成为教育循证改革过程中寻找"最佳证据"的重要方法。与国外相比,我国运用元分析方法进行实证文献综述的研究还比较少。针对于此,本研究以STEM教育对学生学业成绩的影响为例,展示了运用元分析方法进行实证研究综述的过程。研究发现STEM教育有利于提高学生的学业成绩(d=0.410),STEM教育方法、受教育阶段、地区和样本量等因素均会显著影响到STEM教育的效果。这样的研究,不仅提供了关于STEM教育效果的一般性证据,而且在方法层面探讨了如何通过文献综述获得可靠证据以支持教育改革。
  • 图  1  文献检索与筛选流程

    图  2  发表偏倚检验(漏斗图)

    表  1  STEM教育领域内元分析研究的基本信息

    作者研究内容合并效应量调节变量时间范围纳入研究的数量
    Belland
    et al.(2017)
    STEM教育中支架式
    学习的效果
    未报告受教育阶段、学生特征、教学方法、
    学科、测评水平
    未报告56
    Steenbergen-Hu & Cooper(2013)智能教学系统(ITS)在数学
    学习中的效果
    未校正g=0.090
    校正g=0.010
    学科、干预时长、学生特征、受教育阶段、样本量、研究设计、数据收集的年份、文献类型、测试时间、测试类型1997—201026
    An(2012)STEM项目实施评估参与度d=0.346
    效果d=0.456
    延续性d=0.369
    研究设计、项目特征、受教育阶段、
    地区、文献年份、
    1980—201091
    Carbonneau
    et al.(2013)
    实体教具在数学教学中的效果d=0.370文献是否发表、研究设计、教具使用者、测试类型、独立性、教具说明、
    学科、干预时长
    2010—201155
    Yasin & Yunus(2014)技术与工程教育中旨在培养创新能力的教学方法的效果d=1.020教学方法、受教育阶段2000—201216
    Kalaian & Kasim(2014)小组学习对学生统计学知识的影响0.600文献年份、研究设计、教学方法、干预时长、是否使用电脑、教师类型、测试类型、样本量受教育阶段、地区、1990—20099
    Belland
    et al.(2015)
    STEM教育中支架式学习的效果g=0.530支架式特征、研究方法特征、
    测评水平、有效性
    未报告7
    Freeman
    et al.(2014)
    活动式学习在STEM教育中的效果d=0.470 OR=1.950学科、测试项目、班级规模、研究设计1998—2010225
    Young
    et al.(2017)
    校外STEM项目对学生STEM兴趣的影响d=0.370校外项目类型、受教育阶段、校外项目的目的、性别、种族、研究质量2009—201519
    Yildirim(2016)STEM教育对学生成绩和能力的影响未报告未报告1996—201633
    Kim et al.(2018)问题式教学背景下支架式学习的效果g=0.385高阶认知能力的类型、支架式定制、支架式学习的特征、学科1990—201521
    Kalaian
    et al.(2018)
    小组学习在工程和技术教育上中的效果g=0.450文献年份、文献类型、研究设计、受教育阶段、地区、学科1995—201018
    Becker & Park(2011)STEM整合方法对学生的影响d=0.630受教育阶段、STEM整合方法的
    类型、学科
    1989—200928
    Apugliese & Lewis(2017)合作学习对学生化学学科理解的影响g=0.680评估类型、评估范围、合作学习的
    使用途径、小组规模
    2001—201524
    Michko(2008)技术教育与工程教育整合的效果g=0.433未报告1996—200545
    Sarac(2018)STEM教育对学生成就的影响成绩d=0.442
    态度d=0.620
    技能d=0.820
    文献类型、学科、受教育阶段、2010—2017成绩27
    态度18
    技能13
    Sokolowski(2013)探索性学习环境对学生数学成就的影响0.530干预时长、教学模式、受教育阶段、
    内容标准
    2000—201213
    Sokolowski
    et al.(2015)
    使用探索式计算机环境在数学教育中的效果g=0.600受教育阶段、教学工具、干预时长、
    学科、学习设定类型
    2000—201324
      注:“未报告”表示文章未给出表格所列内容的相关信息;合并效应量一栏中纯数值表示文章未给出效应量的类型。
    下载: 导出CSV

    表  2  纳入文献的信息

    文献GeSESEGrDLIRdSs
    Barth,2013BMWPScienceU.S.STEM integrationQES(66)
    Ojaleye & Awofala,2018BUUHMathematicsNigeriapblQES(212)
    Fatade,et al.,2013BUUHMathematicsNigeriapblQES(96)
    Maxwell,et al.,2015BVVPScienceU.S.IBLQES(42)
    Rehmat,2015BVVPScienceU.S.pblQES(98)
    Fan & Yu,2015BUUHEngineeringTaiwan,ChinaSTEM integrationQEL(332)
    Harris,et al.,2015aBUVHScienceU.S.PBLREL(757)
    Harris,et al.,2015bBUVHScienceU.S.PBLREL(654)
    Merrill,2001UUUHScienceU.S.STEM integrationQES(71)
    Kim,et al.,2012BLVHScienceU.S.IBLQES(115)
    Holveck,2012BVVMScienceU.S.IBLQEL(474)
    Araz,2007UMUPScienceTurkeypblQES(192)
    Kizkapan & Bektas,2017BUUMScienceTurkeyPBLQES(38)
    Kassir,2013BUUPScienceUnited Arabs EmiratesIBLQES(52)
    Robinson,et al.,2014aULUPScienceU.S.IBLRES(78)
    Robinson,et al.,2014bULUPScienceU.S.IBLRES(82)
    Cotabish,et al.,2013UUUPScienceU.S.IBLRES(239)
    Akinoglu & Tandogan,2007BUUMScienceTurkeypblQES(50)
    Acar,et al.,2018aUUUPScienceTurkeySTEM integrationQES(47)
    Acar,et al,2018bUUUPMathematicsTurkeySTEM integrationQES(47)
    下载: 导出CSV

    表  3  文献效应量及合并效应量

    文献学科统计信息
    Cohen’dSEVarianceLower limitUpper limitZ-valuep-value
    Barth,2013Science−0.1470.2470.061−0.6300.336−0.5960.551
    Ojaleye & Awofala,2018Mathematics0.8470.1440.0210.5651.1305.885<0.0001
    Fatade,et al.,2013Mathematics0.9550.2170.0470.5291.3804.400<0.0001
    Maxwell,et al.,2015Science0.2040.3100.096−0.4030.8110.6590.510
    Rehmat,2015Science0.9400.2130.0450.5221.3584.409<0.0001
    Fan & Yu,2015Engineering0.8620.1150.0130.6371.0877.507<0.0001
    Harris,et al.,2015aScience0.2200.0760.0060.0700.3702.8790.004
    Harris,et al.,2015bScience0.2500.0800.0060.0930.4073.1190.002
    Merrill,2001Science0.0260.2390.057−0.4420.4930.1090.913
    Kim,et al.,2012Science0.2470.1880.035−0.1220.6151.3120.189
    Holveck,2012Science0.0310.0950.009−0.1540.2170.3310.741
    Araz,2007Science0.8990.1520.0230.6021.1975.930<0.0001
    Kizkapan & Bektas,2017Science0.0020.3250.106−0.6350.6390.0060.995
    Kassir,2013Science1.7810.3280.1071.1382.4235.433<0.0001
    Robinson,et al.,2014aScience1.9020.2910.0851.3112.4736.530<0.0001
    Robinson,et al.,2014bScience1.7130.2590.0671.2062.2206.621<0.0001
    Cotabish,et al.,2013Science0.6930.1340.0180.4310.9555.184<0.0001
    Akinoglu & Tandogan,2007Science0.7890.2940.0860.2141.3652.6870.007
    Acar,et al.,2018aScience1.2470.3190.1020.6211.8733.905<0.0001
    Acar,et al,2018bMathematics1.1740.3160.1000.5541.7953.711<0.0001
    合并效应量0.7000.1110.0120.4830.9186.316<0.0001
    下载: 导出CSV

    表  4  调节变量的选取及其分类

    调节变量类别调节变量内容
    研究特征研究设计、样本特征、样本量、测试工具、测试项目、地区、干预时长
    干预特征STEM教育方法、学科、受教育阶段
    文献特征文献年份、文献类型
    下载: 导出CSV

    表  5  调节效应分析

    调节变量KQBES95% CIp-value
    STEM教育方法PBL347.760(p<0.0001)0.2280.1210.335<0.0001
    pbl50.8880.7261.050<0.0001
    IBL70.9070.3621.4530.001
    STEM integration50.6140.0941.134<0.0001
    受教育阶段小学108.287(p=0.016)1.0210.6591.384<0.0001
    初中30.237−0.2250.6990.315
    高中70.4870.2290.745<0.0001
    学科科学162.975(p=0.226)0.6380.3910.885<0.0001
    数学30.9170.6971.137<0.0001
    工程10.8620.6371.087<0.0001
    地区美国1114.022(p=0.007)0.5150.2480.781<0.0001
    中国台湾10.8620.6371.087<0.0001
    土耳其50.8340.4681.119<0.0001
    尼日利亚20.8800.6451.115<0.0001
    阿联酋11.7811.1382.423<0.0001
    研究设计准实验150.743(p=0.389)0.6430.3800.905<0.0001
    随机实验50.8710.4221.320<0.0001
    干预时长0—2月58.006(p=0.091)0.253−0.1720.6770.244
    2—4月40.8650.7081.021<0.0001
    4—6月31.0660.5351.597<0.0001
    6月以上50.7870.3271.2460.001
    未报告30.741−0.2131.6950.128
    测试工具标准化测试30.002(p=0.964)0.722−0.1981.6430.124
    非标准化测试170.7010.4710.931<0.0001
    样本量大样本45.782(p=0.016)0.3330.0400.6260.026
    小样本160.8160.5531.079<0.0001
    文献年份1996—200730.208(p=0.648)0.5820.0221.1390.041
    2007至今170.7220.4830.962<0.0001
    文献类型期刊150.020(p=0.887)0.7160.4750.957<0.0001
    非期刊50.6700.0851.2550.205
    下载: 导出CSV
  • [1] 卢谢峰, 唐源鸿, 曾凡梅. (2011). 效应量: 估计、报告和解释. 心理学探新,31(3),260−264. doi:  10.3969/j.issn.1003-5184.2011.03.014
    [2] 姚计海. (2017). “文献法”是研究方法吗?——兼谈研究整合法. 国家教育行政学院学报,19(7),89−94. doi:  10.3969/j.issn.1672-4038.2017.07.014
    [3] 张斌贤, 李曙光. (2015). 文献综述与教育学博士学位论文撰写. 学位与研究生教育,32(1),59−63. doi:  10.3969/j.issn.1001-960X.2015.01.022
    [4] 张天嵩, 董圣杰, 周支瑞. (2015). 高级Meta分析方法——基于Stata实现. 上海: 复旦大学出版社.
    [5] Acar, D., Tertemiz, N., & Tasdemir, A. (2018). The Effects of STEM Training on the Academic Achievement of 4th Graders in Science and Mathematics and their Views on STEM Training Teachers. International Electronic Journal of Elementary Education, 10(4), 505−513.
    [6] Akinoglu, O., & Tandogan, R. O. (2007). The Effects of Problem-Based Active Learning in Science Education on Students’ Academic Achievement, Attitude and Concept Learning. Eurasia Journal of Mathematics, Science & Technology Education, 3(1), 71−81.
    [7] An, D. (2012). A Meta-Analysis of the Effectiveness of STEM-Programs in the United States. Seoul: Sangmyung University.
    [8] Apugliese, A., & Lewis, S. T. (2017). Impact of instructional decisions on the effectiveness of cooperative learning in chemistry through meta-analysis. Chemistry Education Research and Practice, 18, 271−278. doi:  10.1039/C6RP00195E
    [9] Araz, G. (2007). The Effect of Problem-Based Learning on the Elementary School Students' Achievement in Genetics. Department of Elementary Science and Mathematics Education.
    [10] Atkinson, R. D., & Mayo, M. J. (2010). Refueling the US Innovation Economy: Fresh Approaches to Science, Technology, Engineering and Mathematics (STEM) Education. The Information Technology & Innovation Foundation.
    [11] Barth, K. N. (2013). An Investigation of the Effects of Integrating Science and Engineering Content and Pedagogy in an Elementary School Classroom (Doctoral dissertation). Provo: Brigham Young University.
    [12] Becker, K., & Park, K. (2011). Integrative Approaches among Science, Technology, Engineering, and Mathematics (STEM) Subjects on Students' Learning: A Meta-Analysis. Journal of STEM Education: Innovations and Research, 12(5), 23−37.
    [13] Bediou, B., Adams, D. M., Mayer, R. E., Tipton, E., & Green, C. S. (2018). Meta- Analysis of Action Video Game Impact on Perceptual, Attentional, and Cognitive Skills. Psychological Bulletin, 144(1), 77−110. doi:  10.1037/bul0000130
    [14] Belland, B. R., Walker, A. E., Olsen, M. W., & Leary, H. (2015). A Pilot Meta-Analysis of Computer-Based Scaffolding in STEM Education. Educational Technology & Society, 18(1), 183−197.
    [15] Belland, B. R., Walker, A. E., & Kim, N. J. (2017). A Bayesian Network Meta-Analysis to Synthesize the Influence of Contexts of Scaffolding Use on Cognitive Outcomes in STEM Education. Review of Educational Research, 87(6), 1042−1081. doi:  10.3102/0034654317723009
    [16] Bicer, A., Navruz, B., Capraro, R. M., Capraro, M. M., Oner, T., & Boedeker, P. (2015). STEM Schools VS. Non-STEM Schools: Comparing Students’ Mathematics Growth Rate on High-Stakes Test Performance. International Journal on New Trends in Education and Their Implications, 6(1), 138−150.
    [17] Bicer, A., Capraro, R. M., & Capraro, M. M. (2017). Integrated STEM Assessment Model. EURASIA Journal of Mathematics, Science & Technology Education, 13(7), 3959−3968.
    [18] Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. New Jersey: John Wiley & Sons, Ltd.
    [19] Cakici, Y., & Turkmen, N. (2013). An Investigation of the Effect of Project-Based Learning Approach on Children’s Achievement and Attitude in Science. The Online Journal of Science and Technology, 3(2), 10−17.
    [20] Carbonneau, K. J., Marley, S. C., Selig, J. P. (2013). A Meta-Analysis of the Efficacy of Teaching Mathematics With Concrete Manipulatives. Journal of Educational Psychology, 105(2), 380−400. doi:  10.1037/a0031084
    [21] Carmichael, C. C. (2017). A State-By-State Policy Analysis of STEM Education for K-12 Public Schools (Ed.D. Dissertation). New Jersey: Seton Hall University.
    [22] Cervetii, G. N., Barber, J., Dorph, R., Pearson, D., & Goldschmidt, P. G. (2012). The Impact of an Integrated Approach to Science and Literacy in Elementary School Classrooms. Journal of Research in Science Teaching, 19(5), 631−658.
    [23] Cheung, A., & Slavin, R. E. (2012). Effects of Educational Technology Applications on Reading Outcomes for Struggling Readers: A Best Evidence Synthesis. Center for Research and Reform in Education, Johns Hopkins University.
    [24] Cheung, A., & Slavin, R. E. (2013a). The Effectiveness of Educational Technology Applications on Mathematics Achievement in K-12 Classrooms: A meta-analysis. Educational Research Review, 9(1), 88−11.
    [25] Cheung, A. C. K., & Slavin, R. E. (2013b). Effects of Educational Technology Applications on Reading Outcomes for Struggling Readers: A Best Evidence Synthesis. Reading Research Quarterly, 48(3), 277−299. doi:  10.1002/rrq.50
    [26] Cheung, A., & Slavin, R. E. (2016). How Methodological Features Affect Effect Sizes in Education. Educational Researcher, 45(5), 283−292. doi:  10.3102/0013189X16656615
    [27] Chow, S. L. (1988). Significance Test or Effect Size?. Psychological Bulletin, 103(1), 105−110. doi:  10.1037/0033-2909.103.1.105
    [28] Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.
    [29] Cotabish, A., Dailey, D., Robinson, A., & Hughes, G. (2013). The Effects of a STEM Intervention on Elementary Students’ Science Knowledge and Skills. School Science and Mathematics, 113(5), 215−226. doi:  10.1111/ssm.12023
    [30] Denney, A. S., Tewksbury, R. (2013). How to Write a Literature Review. Journal of Criminal Justice Education, 24(2), 218−234. doi:  10.1080/10511253.2012.730617
    [31] Duval, S., & Tweedie, R. (2000). Trim and Fill: A Simple Funnel-Plot-Based Method of Testing and Adjusting for Publication Bias in Meta-Analysis. Biometrics, 56(2), 455−463. doi:  10.1111/j.0006-341X.2000.00455.x
    [32] Fan, S. C., & Yu, K. C. (2015). How an integrative STEM curriculum can benefit students in engineering design practices. International Journal of Technology & Design Education, 27(1), 1−23.
    [33] Fatade, A. O., Mogari, D., & Arigbabu, A. A. (2013). Effect of Problem-Based Learning on Senior Secondary School Students’ Achievements in Further Mathematics. Acta Didactica Napocensia, 6(3), 27−44.
    [34] Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active Learning Increases Student Performance in Science, Engineering, and Mathematics. National Acad Science, 111(23), 8410−8415. doi:  10.1073/pnas.1319030111
    [35] Han, S., Rosli, R., Capraro, M. M., & Capraro, R. M. (2016). The Effect of Science, Technology, Engineering and Mathematics (STEM) Project Based Learning (PBL) on Students’ Achievement in Four Mathematics Topics. Journal of Turkish Science Education, 13, 3−29. doi:  10.12973/tused.10153a
    [36] Harris, C. J., Penuel, W. R., D’Angelo, C. M., DeBarger, A. H., Gallagher, L.P., Kennedy, C. A., Cheng, B. H., & Krajcik, J. S. (2015). Impact of Project-Based Curriculum Materials on Student Learning in Science: Results of a Randomized Controlled Trial. Journal of Research in Science Teaching, 52(10), 1362−1385. doi:  10.1002/tea.21263
    [37] Holveck, S. E. (2012). Teaching for Conceptual Change in a Density Unit Taught to 7th Graders: Comparing Two Teaching Methodologies-Scientific Inquiry and a Traditional Approach. Oregon: University of Oregon.
    [38] Honey, M., Pearson, G., & Schweingruber, H. (2014). STEM Integration in K-12 Education Status, Prospects, and an Agenda for Research. Washington D. C.: National Academies Press.
    [39] James, J. S. (2014). Science, Technology, Engineering, and Mathematics (STEM) Curriculum and Seventh Grade Mathematics and Science Achievement. Michigan: ProQuest LLC.
    [40] Kalaian, S. A., & Kasim, R. M. (2014). A Meta-Analytic Review of Studies of the Effectiveness of Small-Group Learning Methods on Statistics Achievement. Journal of Statistics Education, 22(1), 1−20.
    [41] Kala. (2018). Effectiveness of Small-Group Learning Pedagogies in Engineering and Technology Education: A Meta-Analysis. Journal of Technology Education, 29(2), 20−35. doi:  10.21061/jte.v29i2.a.2
    [42] Kassir, H. A. N. (2013). The effectiveness of the Science-Inquiry Teaching Approach on the Students’ Achievement and Engagement in the UAE’ Public Schools. Dubai: The British University in Dubai.
    [43] Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3, 1−11.
    [44] Kim, K. H., Tassel-Baska, J. V., Bracken, B. A., Feng, A., Stambaugh, T., & Bland, L. (2012). Project Clarion: Three Years of Science Instruction in Title I Schools among K-Third Grade Students. Research in Science Education, 42(5), 813−829. doi:  10.1007/s11165-011-9218-5
    [45] Kim, N. A., Belland, B. R., & Walker, A. E. (2018). Effectiveness of Computer-Based Scaffolding in the Context of Problem-Based Learning for Stem Education: Bayesian Meta-analysis. Educational Psychology Review, 30(2), 397−429. doi:  10.1007/s10648-017-9419-1
    [46] Kine, M. S. (2017). Visual-Spatial Ability in STEM Education: Transforming Research into Practice. Switzerland: Springer International Publishing Switzerland, 2017.
    [47] Kizkapan, O., & Bektas, O. (2017). The Effect of Project Based Learning on Seventh Grade Students’ Academic Achievement. International Journal of Instruction, 10(1), 37−54. doi:  10.12973/iji.2017.1013a
    [48] Korur, F., Efe, G., Erdogan, F., & Tunc, B. (2015). Effects of Toy Crane Design-Based Learning on Simple Machines. International Journal of Science and Mathematics Education, 15, 251−271.
    [49] Lazowski, R., & Hulleman, C. (2015). Motivation Interventions in Education: A Meta-Analytic Review. Review of Educational Research, 86(2), 1−39.
    [50] Li, Y., Huang, Z., Jiang, M., & Chang, T. W. (2016). The Effect on Pupils’ Science Performance and Problem-Solving Ability through Lego: An Engineering Design-based Modeling Approach. Educational Technology & Society, 19(3), 143−156.
    [51] Lipsey, M. W., & Wilson, D. B. (2001). Practical Meta-Analysis. Thousand Oaks: Sage Publications, Inc.
    [52] Maxwell, D. O., Lambeth, D. T., & Cox, J. T. (2015). Effects of Using Inquiry-Based Learning on Science Achievement for Fifth-Grade Students. Asia-Pacific Forum on Science Learning and Teaching, 16(1), 1−31.
    [53] McDonald, C. V. (2016). STEM Education: A Review of the Contribution of the Disciplines of Science, Technology, Engineering and Mathematics. Science Education International, 27(4), 530−569.
    [54] Merrill, C. (2001). Integrated Technology, Mathematics, and Science Education: A Quasi-Experiment. Journal of Industrial Teacher Education, 38, 45−61.
    [55] Michko, G. M. (2008). Meta-Analysis of Effectiveness of Technology Use in Undergraduate Engineering Education. https://www.researchgate.net/publication/224361059_Meta-analysis_of_effectiveness_of_technology_use_in_undergraduate_engineering_education.
    [56] Ojaleye, O., & Awofala, A. O. A. (2018). Blended Learning and Problem-Based Learning Instructional Strategies as Determinants of Senior Secondary School Students’ Achievement in Algebra. International Journal of Research in Education and Science, 4(2), 486−501.
    [57] Olivarez, N. (2013). The Impact of a STEM Program on Academic Achievement of Eighth Grade Students in a South Texas Middle School. Corpus Christi, Texas: Texas A & M University - Corpus Christi.
    [58] Rehmat, A. P. (2015). Engineering the Path to Higher-Order Thinking in Elementary Education: A Problem-Based Learning Approach for STEM Integration. Las Vegas: University of Nevada.
    [59] Robinson, A., Dailey, D., Hughes, G., & Cotabish, A. (2014). The Effects of a Science- Focused STEM Intervention on Gifted Elementary Students’ Science Knowledge and Skills. Journal of Advanced Academics, 25(3), 189−213. doi:  10.1177/1932202X14533799
    [60] Rosenthal, R. (1979). The “File Drawer Problem” and Tolerance for Null Results. Psychol Bull, 86, 638−641. doi:  10.1037/0033-2909.86.3.638
    [61] Rothstein, H. R., Sutton, A. J., & Borenstein, M. (2005). Publication Bias in Meta-Analysis Prevention, Assessment and Adjustments.Chichester: John Wiley & Sons Ltd.
    [62] Rozek, C. S., Ramirez, G., Fine, R. D., & Beilock, S. L. (2019). Reducing Socioeconomic Disparities in the STEM Pipeline Through Student Emotion Regulation. Proceeding of the National Academy of Sciences of the United States of America, 116(5), 1553−1558. doi:  10.1073/pnas.1808589116
    [63] Sanders, M. (2009). STEM, STEM Education, STEMmania. Technology Teacher, 68(4), 20−26.
    [64] Sarac, H. (2018). The Effect of Science, Technology, Engineering and Mathematics-Stem Education Practices on Students’ Learning Outcomes: A meta-analysis. The Turkey Online Journal of Educational Technology, 17(2), 125−142.
    [65] Slavin, R. E. (2008). Evidence-Based Reform in Education: What Will It Take?. European Educational Research Journal, 7(1), 124−128. doi:  10.2304/eerj.2008.7.1.124
    [66] Slavin, R. E. (2017). Evidence-Based Reform in Education. Journal of Education for Students Placed at Risk, 22(3), 178−184. doi:  10.1080/10824669.2017.1334560
    [67] Sokolowski, A. (2013). The Effects of Exploratory Learning Environments on Students’ Mathematics Achievement. Texas: Texas A&M University.
    [68] Sokolowski, A., Li, P., & Willson, V. (2015). The Effects of Using Exploratory Computerized Environments in Grades 1 to 8 Mathematics: A Meta-Analysis of Research. International Journal of STEM Education, 2(8), 1−17.
    [69] Steenbergen-Hu, S., & Cooper, H. (2013). A Meta-Analysis of the Effectiveness of Intelligent Tutoring Systems on K-12 Students’ Mathematical Learning. Journal of Educational Psychology, 105(4), 970−987. doi:  10.1037/a0032447
    [70] Taylor, K. (2016). Collaborative Robotics, More Than Just Working in Groups: Effects of Student Collaboration on Learning Motivation, Collaborative Problem Solving, and Science Process Skills in Robotic Activities. Boise: Boise State University.
    [71] Valentine, J. C., & Cooper, H. (2003). What Works Clearinghouse Study Design and Implementation Assessment Device (Version 0.6). Washington, DC: U.S. Department of Education.
    [72] Yasin, R. M., & Yunus, N. S. (2014). A Meta-Analysis Study on the Effectiveness of Creativity Approaches in Technology and Engineering Education. Asian Social Science, 10(3), 242−252.
    [73] Yildirim, B. (2016). An Analyses and Meta-Synthesis of Research on STEM Education. Journal of Education and Practice, 7(34), 23−33.
    [74] Young, J., Ortiz, N., & Young, J. (2017). STEMulating Interest: A Meta-Analysis of the Effects of Out-of-School Time on Student STEM Interest. International Journal of Education in Mathematics, Science and Technology, 5(1), 62−74.
    [75] Zeng, Z., Yao, J. Gu, H., & Przybylski, R. (2018). A Meta-Analysis on the Effects of STEM Education on Students’ Abilities. Science Insights Education Frontiers, 1(1), 3−16. doi:  10.15354/sief.18.re005
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  559
  • HTML全文浏览量:  643
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 网络出版日期:  2020-07-14
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回