中国人文社会科学核心期刊

中文社会科学引文索引(CSSCI)来源期刊

中文核心期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 35 Issue 5
Sep.  2017
Turn off MathJax
Article Contents
LIU Di, YANG Chun. A Review of Researches on Magnitude Representation[J]. Journal of East China Normal University (Educational Sciences), 2017, 35(5): 138-145. doi: 10.16382/j.cnki.1000-5560.2017.05.012
Citation: LIU Di, YANG Chun. A Review of Researches on Magnitude Representation[J]. Journal of East China Normal University (Educational Sciences), 2017, 35(5): 138-145. doi: 10.16382/j.cnki.1000-5560.2017.05.012

A Review of Researches on Magnitude Representation

doi: 10.16382/j.cnki.1000-5560.2017.05.012
  • Publish Date: 2017-09-20
  • The magnitude representation is the process of interpretation, expression and operation of the quantitative stimulus in the brain. It is an important part of the development of human cognition. The magnitude representation of children tends to be mature with age growth. The process includes four overlapping trends:a) representing increasingly precisely the magnitudes of non-symbolic numbers, b) connecting smallsymbolic numbers to their non-symbolic referents, c) extending understanding from smaller to larger whole numbers, and d)accurately representing the magnitudes of rational numbers. This study, based on behavioral and cognitive neuroscience on magnitude research in recent twenty years, further reveals the trend and inherent processing mechanism of the magnitude knowledge, and summarizes educational interventions and short-term trainings so as to improve children's mathematics ability.
  • loading
  • [1]
    陈英和.(2015).儿童数量表征与数概念的发展特点及机制.心理发展与教育, 31(1), 21-28. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGXG201410001765.htm
    [2]
    陈英和, 赖颖慧.(2013).儿童非符号数量表征的特点及作用探析.北京师范大学学报(社会科学版), 1, 33-41. http://www.cnki.com.cn/Article/CJFDTOTAL-BJSF201301008.htm
    [3]
    赖颖慧, 陈英和, 陈聪. (2012).视知觉线索对幼儿小数离散数量表征的影响.心理发展与教育, 4, 337-344. http://www.cnki.com.cn/Article/CJFDTOTAL-XLFZ201204001.htm
    [4]
    刘国芳, 辛自强.(2012).数字线估计研究:"模型"背后的策略.心理研究, 5(2), 27-33. http://www.cnki.com.cn/Article/CJFDTOTAL-OXLY201202005.htm
    [5]
    卢淳, 郭红力, 司继伟, 孙燕. (2014).不同数字线下儿童与成人分数估计的表征模式.心理发展与教育, 30(5), 449-456. http://www.cnki.com.cn/Article/CJFDTOTAL-XLFZ201405001.htm
    [6]
    徐华. (2011). 幼儿线性数量表征的形成及其机制(博士学位论文). 北京师范大学, 北京.
    [7]
    徐华, 陈英和.(2012).儿童数字线估计研究的述评与前瞻.心理研究, 5(5), 46-50. http://www.cnki.com.cn/Article/CJFDTOTAL-OXLY201205009.htm
    [8]
    张丽, 卢彩芳, 杨新荣.(2014).3-6年级儿童整数数量表征与分数数量表征的关系.心理发展与教育, 1, 1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-XLFZ201401001.htm
    [9]
    周广东, 莫雷, 温红博.(2009).儿童数字估计的表征模式与发展.心理发展与教育, 4, 21-29. http://www.cnki.com.cn/Article/CJFDTOTAL-XLFZ200904004.htm
    [10]
    Bailey, D.H., Siegler, R.S., & Geary, D.C.(2014). Early predictors of middle school fraction knowledge. Developmental Science, 17, 775-785. doi:  10.1111/desc.2014.17.issue-5
    [11]
    Booth, J.L., & Siegler, R.S.(2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42, 189-201. doi:  10.1037/0012-1649.41.6.189
    [12]
    Brysbaert, M.(2004). Number recognition in different formats. In J. I. D Campbell, (Ed.), Handbook of Mathematical Cognition (pp. 23-42). Psychology Press:New York. http://psycnet.apa.org/psycinfo/2005-04876-002
    [13]
    Bulthé, J., De Smedt, B., & Op de Beeck, H.(2014). Format-dependent representations of symbolic and non-symbolic numbers in the human cortex as revealed by multi-voxel pattern analyses. Neuro Image, 87, 311-322. http://www.ncbi.nlm.nih.gov/pubmed/24201011
    [14]
    Butterworth, B(2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14, 534-541. doi:  10.1016/j.tics.2010.09.007
    [15]
    Cantlon, J. F., Safford, K. E., & Brannon, E. M. (2010).Spontaneous analog number representations in 3-year-old children. Developmental Science, 13, 289-297. doi:  10.1111/desc.2010.13.issue-2
    [16]
    Cohen, K. R., Lammertyn, J., & Izard, V.(2008). Are numbers special? An overview of chronometric, neuro imaging, developmental and comparative studies of magnitude representation. Progress in Neurobiology, 84, 132-147. doi:  10.1016/j.pneurobio.2007.11.001
    [17]
    Dehaene, S. (2008). Symbols and quantities in parietal cortex:Elements of a mathematical theory of number representation and manipulation. In P. Haggard, Y. Rossetti, & Y.M.Kawato (Eds.), Sensorimotor foundations of higher cognition, attention, and performance (Attention and Performance Series), 22 (pp. 527-574). New York:Oxford University Press. http://www.oalib.com/references/12434854
    [18]
    Dehaene, S., Izard, V., Spelke, E., Pica, P. (2008). Log or linear? Distinct intuitions of the number scale in Western and Amazonian indigene cultures. Science, 320, 1217-20. doi:  10.1126/science.1156540
    [19]
    Dewind, N.K., & Brannon, E.M.(2012). Malleability of the approximate number system:Effects of feedback and training. Frontiers in Human Neuroscience, 6, 68. http://pubmedcentralcanada.ca/pmcc/articles/PMC3329901/
    [20]
    Duncan, G.J., Dowsett, C.J., Claessens, A., Magnuson, K., Huston, A.C., & Klebanov, P. et al.(2007).School readiness and later achievement. Developmental Psychology, 43, 1428-1446. doi:  10.1037/0012-1649.43.6.1428
    [21]
    Fazio, L.K., Bailey, D.H., Thompson, C.A., & Siegler, R.S.(2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53-72. doi:  10.1016/j.jecp.2014.01.013
    [22]
    Feigenson, L., Dehaene, S., & Spelke, E.(2004). Core systems of number. Trends in Cognitive Sciences, 8, 307-314. doi:  10.1016/j.tics.2004.05.002
    [23]
    Fischer, M.H., & Brugger, P.(2011). When digits help digits:Spatial-numerical associations point to finger counting as prime examples of embodied cognition. Frontiers in Psychology, 2, 260. http://pubmedcentralcanada.ca/pmcc/articles/PMC3198540/
    [24]
    Friso-van den Bos, I., van der Ven, S.H.G., Kroesbergen, E.H., & Van Luit, J.E.H.(2013). Working memory and mathematics in primary school children:A meta-analysis. Educational Research Review, 10, 29-44. doi:  10.1016/j.edurev.2013.05.003
    [25]
    Fuchs, L.S., Schumacher, R.F., Long, J., Namkung, J., Hamlett, C.L. et al.(2013). Improving at-risk learners' understanding of fractions. Journal of Educational Psychology, 105, 683-700. doi:  10.1037/a0032446
    [26]
    Fuhs, M.W., & McNeil, N.M.(2013). ANS acuity and mathematics ability in preschoolers from low-income homes:Contributions of inhibitory control. Developmental Science, 16, 136-148. doi:  10.1111/desc.2012.16.issue-1
    [27]
    Geary, D.C., Hoard, M.K., Byrd-Craven, J., Nugent, L., & Numtee, C.(2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78, 1343-1359. doi:  10.1111/cdev.2007.78.issue-4
    [28]
    Gilmore, C.K., McCarthy, S.E., & Spelke, E.S.(2010). Nonsymbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115, 394-406. doi:  10.1016/j.cognition.2010.02.002
    [29]
    Halberda, J., Ly, R., Wilmer, J.B., Naiman, D.Q., & Germine, L. (2012). Number sense across the Life span as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences of the United States of America, 109, 11116-11120. doi:  10.1073/pnas.1200196109
    [30]
    Halberda, J., Mazzocco, M.M.M., & Feigenson, L.(2008).Individual differences in non-verbal number acuity correlate with math achievement. Nature, 455, 665-668. doi:  10.1038/nature07246
    [31]
    Hyde, D.C., Khanum, S., & Spelke, E.S.(2014). Brief nonsymbolic, approximate number practice enhances subsequentexact symbolic arithmetic in children. Cognition, 131, 92-107. doi:  10.1016/j.cognition.2013.12.007
    [32]
    Jacob, S.N., & Nieder, A.(2009). Notation-independent representation of fractions in the human parietal cortex. Journal of Neuroscience, 29, 4652-4657. doi:  10.1523/JNEUROSCI.0651-09.2009
    [33]
    Jacob, S.N., Vallentin, D., & Nieder, A.(2012). Relating magnitudes:The brain's code for proportions. Trends in Cognitive Sciences, 16, 157-166. doi:  10.1016/j.tics.2012.02.002
    [34]
    Jordan, K.E., & Brannon, E.M.(2006). The multisensory representation of number in infancy. Proceedings of the National Academy of Sciences of the United States of America, 103, 3486-3489. doi:  10.1073/pnas.0508107103
    [35]
    Jordan, N.C., Hansen, N., Fuchs, L.S., Siegler, R.S., Gersten, R. et al.(2013). Developmental predictors of fraction concepts and procedures. Journal of Experimental Child Psychology, 116, 45-58. doi:  10.1016/j.jecp.2013.02.001
    [36]
    Laski, E.V., & Siegler, R.S.(2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development, 78, 1723-1743. doi:  10.1111/cdev.2007.78.issue-6
    [37]
    Laski, E.V., & Siegler, R.S.(2014). Learning from number board games:You learn what you encode. Developmental Psychology, 50, 853-864. doi:  10.1037/a0034321
    [38]
    Le Corre, M., & Carey, S.(2007). One, two, three, four, nothing more:An investigation of the conceptual sources of the verbal counting principles. Cognition, 105, 395-438. doi:  10.1016/j.cognition.2006.10.005
    [39]
    Lipton, J., & Spelke, E.S.(2003). Origins of number sense:Large number discrimination in human infants. Psychological Science, 14, 396-401. doi:  10.1111/1467-9280.01453
    [40]
    Lourenco, S.F., & Longo, M.R.(2010). General magnitude representation in human infants. Psychological Science, 21, 873-881. doi:  10.1177/0956797610370158
    [41]
    Lourenco, S.F., & Longo, M.R. (2011). Origins and development of generalized magnitude representation. In S. Dehaene & E. Brannon (Eds.), Space, time, and number in the brain:Searching for the foundations of mathematical thought (pp.225-244). London:Elsevier. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.473.4222
    [42]
    Lyons, I.M., Price, G.R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success ingrades 1-6. Developmental Science, 17, 714-726. doi:  10.1111/desc.2014.17.issue-5
    [43]
    Newcombe, N.S., Levine, S.C., & Mix, K.(2015). Thinking about quantity:The intertwined development of spatial and numerical cognition. Wiley Interdisciplinary Reviews:Cognitive Science, 6, 491-505. doi:  10.1002/wcs.1369
    [44]
    Nieder, A. (2011). The neural code for numbers. In S. Dehaene & E. Brannon (Eds.), Space, time, and number in the brain:Searching for the foundations of mathematical thought (pp.103-118). London:Elsevier.
    [45]
    Nys, J., Ventura, P., Fernandes, T., Querido, L., Leybaert, J., & Content, A. (2013). Does math education modify the approximate number system? A comparison of schooled and unschooled adults. Trends in Neuroscience and Education, 2(1), 13-22. doi:  10.1016/j.tine.2013.01.001
    [46]
    Park, J., & Brannon, E.M.(2013). Training the approximate number system improves math proficiency. Psychological Science, 24, 2013-2019. doi:  10.1177/0956797613482944
    [47]
    Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S.(2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53, 293-305. doi:  10.1016/j.neuron.2006.11.022
    [48]
    Ramani, G.B., & Siegler, R.S.(2008). Promoting broad and stable improvements in low-income children's numerical knowledge through playing number board games. Child Development, 79, 375-394. doi:  10.1111/j.1467-8624.2007.01131.x
    [49]
    Ritchie, S.J., & Bates, T.C.(2013). Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychological Science, 24, 1301-1308. doi:  10.1177/0956797612466268
    [50]
    Sadler, P.M., & Tai, R.H.(2007). The two high-school pillars supporting college science. Science, 317, 457-458. doi:  10.1126/science.1144214
    [51]
    Siegler, R.S.(2016).Magnitude knowledge:the common core of numerical development. Developmental science, 19(3), 341-361. doi:  10.1111/desc.12395
    [52]
    Siegler, R. S., Booth, J.L.(2004). Development of numerical estimation in young children. Child Development, 75(2), 428-444. doi:  10.1111/cdev.2004.75.issue-2
    [53]
    Siegler, R.S., Duncan, G.J., Davis-Kean, P.E., Duckworth, K., Claessens, A. et al. (2012). Early predictors of high school mathematics achievement. Psychological Science, 23, 691-697. doi:  10.1177/0956797612440101
    [54]
    Siegler, R.S., & Mu, Y. (2008). Chinese children excel on novel mathematics problems even before elementary school. Psychological Science, 19, 759-763. doi:  10.1111/j.1467-9280.2008.02153.x
    [55]
    Siegler, R.S., & Pyke, A.A.(2013). Developmental and individual differences in understanding fractions. Developmental Psychology, 49, 1994-2004. doi:  10.1037/a0031200
    [56]
    Siegler, R.S., & Ramani, G.B.(2009). Playing linear number board games-but not circular ones improves low-income preschoolers' numerical understanding. Journal of Educational Psychology, 101, 545-560. doi:  10.1037/a0014239
    [57]
    Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62 (4), 273-296. doi:  10.1016/j.cogpsych.2011.03.001
    [58]
    Thompson, C.A., & Opfer, J.E.(2008). Costs and benefits of representational change:Effects of context on age and sex differences in symbolic magnitude estimation. Journal of Experimental Child Psychology, 101(1), 20-51. doi:  10.1016/j.jecp.2008.02.003
    [59]
    Thompson, C.A., & Opfer, J.E.(2010). How 15 hundred is like15 cherries:Effect of progressive alignment on representational changes in numerical cognition. Child Development, 81, 1768-1786. doi:  10.1111/cdev.2010.81.issue-6
    [60]
    Torbeyns, J., Schneider, M., Xin, Z. Q., & Siegler, R. S.(2015). Bridging the gap:Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction, 37, 5-13. doi:  10.1016/j.learninstruc.2014.03.002
    [61]
    Vukovic, R.K., Fuchs, L.S., Geary, D.C., Jordan, N.C., Gersten, R. et al.(2014). Sources of individual differences in children's understanding of fractions. Child Development, 85, 1461-1476. doi:  10.1111/cdev.2014.85.issue-4
    [62]
    Watts, T.W., Duncan, G.J., Siegler, R.S., & Davis-Kean, P.E.(2014). What's past is prologue:Relations between early mathematics knowledge and high school achievement. Educational Researcher, 43, 352-360. doi:  10.3102/0013189X14553660
    [63]
    Xu, F., & Arriaga, R.I.(2007). Number discrimination in 10-month-old infants. British Journal of Developmental Psychology, 25, 103-108. doi:  10.1348/026151005X90704
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (280) PDF downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return